

POLY- L-LYSINE COATED SURFACE

Biomat has developed a polystyrene surface with physically adsorbed poly-L-Lysine. The monomeric L-Lysine chain shows a high density of groups:

- a-amino
- a-carboxyl
- ε-amino

These groups are able to react trough electrostatic and stereospecific bonds. The polystyrene optical features don't change, allowing the modified surface to be used as a valid tool to carry out biological tests. This surface shows its usefulness for these applications:

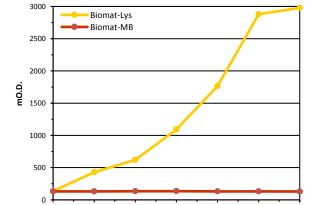
- interactions with plasminogen and plasminogen activator
- · interactions with ribosomal RNA
- interactions with double stranded DNA

TECHNICAL NOTE N. 21

Stereospecific binding activity

General procedure for binding NHS-b to Poly-L-Lysine coated surface

This test is suitable for measuring the available ε - amino groups on Lysine


Preparation of reagents and buffers

Materials

Solid phase:	Biomat plates	MT12F-LYS-L (poly-L-Lysine coated plate) MT0F-MB (medium binding capacity)
ε-Caproylamido-biotin-N-	BIO-SPA	Cat No. B002-61
hydroxysuccinimide ester (NHS- biotin)		
Dimetilformamide (DMFO)	Fluka	Cat No. 40250
Tween® 20	Merck	Cat No. 822184
Streptavidin-peroxidase conjugate	BIO-SPA	Cat. No. SB01-61
TMB peroxidase substrate	Kirkegard & Perry	Cat. No. 50-76-05

Experiment

- 1. Dispense 100μ l NHS-biotin solutions $12.5-6.25-3.125-1.56-0.78-0~\mu$ g/ml diluted in 0.1M PBS+ Tween $^{\circledR}$ 20 0.15% pH 7.2 into the wells. Seal the wells with adhesive tape to prevent evaporation. Stereospecific binding activity of poly-L-lysine surface
- 2. Incubate overnight at 4°C.
- 3. Empty the wells and wash with 0.1M PBS+ Tween $^{\circledR}$ 20 0.05%, pH 7.2 four times.
- 4. Add $100\mu l$ of 50 ng/ml streptavidin-HRP to each well and incubate 30 minutes at room temperature.
- 5. Empty the wells and wash with 0.1M PBS+ Tween $^{\circledR}$ 20 0.05%, pH 7.2 four times.
- 6. Add 100 μl /well of TMB substrate solution and incubate 10 minutes at room temperature.
- 7. Stop the substrate reaction by adding 100 μ l of sulphuric acid 1 N and read the optical density values at 450 nm.

1 56

μg/ml of NHS-biotin

3 125

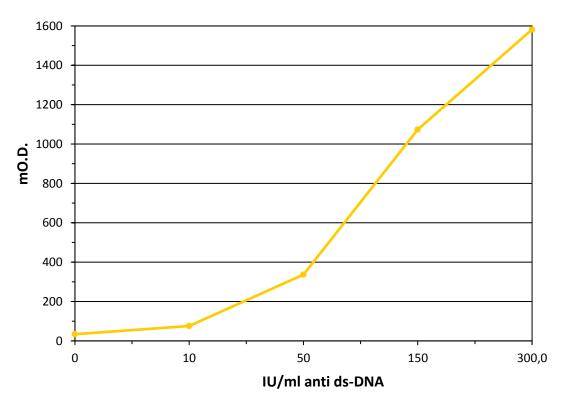
6 25

12 5

0.39

TECHNICAL NOTE N. 22

Electrostatic functional activity


General procedure for binding dsDNA to Poly-L-Lysine coated surface

- 1. dilute the dsDNA molecule to 1-10 μ g/ml in 20 mM TRIS-HCl pH 8, 0.1 mM EDTA
- 2. proceed with incubation: conditions depend on dsDNA molecular weight and purity
- 3. wash three times to remove the unbound material
- 4. proceed with your specific test/application

example of test: human (autoantibodies) IgG determination to dsDNA

- 1. dilute dsDNA from Calf tymus (Sigma code D4522) to 5 μg/ml in 20 mM TRIS-HCl pH 8, 0.1 mM EDTA
- 2. add 100 μ l/well of the diluted dsDNA to each wells and incubate o/n at + 4 °C
- 3. empty the wells and wash three times with 0.1 M PBS pH 7.2+0.05 % Tween $^{\circledR}$ 20
- 4. add 200 μ l to each wells of 0.1 M PBS pH 7.2, 0.5 % BSA and incubate 2 h at room temperature
- 5. empty the wells and wash three times with 0.1 M PBS pH 7.2+0.05 % Tween $^{\circledR}$ 20
- 6. add 100 µl of diluted human serum with the following IgG concentrations to dsDNA:
- 7. 0-10-50-150-300 IU/ml
- 8. incubate 30' at room temperature
- 9. empty the wells and wash three times with 0.1 M PBS pH 7.2+0.05 % Tween $^{\circledR}$ 20
- 10. add 100 μ l of diluted goat anti-human IgG-peroxidase labeled
- 11. incubate 30' at room temperature
- 12. empty the wells and wash three times with 0.1 M PBS pH 7.2+0.05 % Tween[®] 20
- 13. add 100 μ l/well of TMB substrate and incubate 15 minutes at room temperature
- 14. stop the substrate reaction by adding 100 µl of sulphuric acid 1N and read the optical density
- 15. values at 450 nm

Electrostatic functional activity of poly-L-lysine surface

